Optimization of pulsed current in resistance spot welding of Zn-coated hot-stamped boron steels
Metallic coatings have been widely used for hot-stamped boron steel in automotive applications. Surface coating in hot-stamped boron steels has improved corrosion resistance. However, a thick coating layer degrades resistance spot weldability. In the case of a Zn-coated hot-stamped boron steel, the...
Saved in:
Published in: | Journal of mechanical science and technology Vol. 33; no. 4; pp. 1615 - 1621 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Seoul
Korean Society of Mechanical Engineers
01-04-2019
Springer Nature B.V 대한기계학회 |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metallic coatings have been widely used for hot-stamped boron steel in automotive applications. Surface coating in hot-stamped boron steels has improved corrosion resistance. However, a thick coating layer degrades resistance spot weldability. In the case of a Zn-coated hot-stamped boron steel, the high contact resistance and material stiffness with low vaporization temperature of the alloyed layers result in a narrow current passage at the faying surface. Expulsion occurs at low current due to rapid heat development, resulting in a narrow weld current range. The pulsed current can control the heat input by applying a fast cool time during welding to improve the mechanical properties of the joint and acceptable current range. In this study, Zn-coated hot-stamped steels were resistance spot welded using various pulse current procedures, and welding condition was optimized via three pulsed current steps. Step 1: Contact area was controlled without nugget formation. Step 2: Nugget growth was minimized and contact area was maximized. Step 3: The maximum acceptable current range and nugget diameter were achieved. These welding conditions improved the acceptable current range and mechanical properties of spot welds due to increased spot weld size. |
---|---|
ISSN: | 1738-494X 1976-3824 |
DOI: | 10.1007/s12206-019-0313-2 |