Adaptive Dynamic Programming for Model-Free Global Stabilization of Control Constrained Continuous-Time Systems
This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of pa...
Saved in:
Published in: | IEEE transactions on cybernetics Vol. 52; no. 2; pp. 1048 - 1060 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-02-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of parameterized algebraic Riccati equations (AREs) is employed to design the low-gain feedback control laws. An adaptive dynamic programming (ADP) method is presented to find the solution of the parameterized ARE without requiring the knowledge of the system dynamics. In particular, we present an iterative ADP algorithm that searches for an appropriate value of the low-gain parameter and iteratively solves the parameterized ADP Bellman equation. We present both state feedback and output feedback algorithms. The closed-loop stability and the convergence of the algorithm to the nominal solution of the parameterized ARE are shown. The simulation results validate the effectiveness of the proposed scheme. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2168-2267 2168-2275 |
DOI: | 10.1109/TCYB.2020.2989419 |