Energy management for commercial servers
Servers: high-end, multiprocessor systems running commercial workloads, have typically included extensive cooling systems and resided in custom-built rooms for high-power delivery. Recently, as transistor density and demand for computing resources have rapidly increased, even these high-end systems...
Saved in:
Published in: | Computer (Long Beach, Calif.) Vol. 36; no. 12; pp. 39 - 48 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-12-2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Servers: high-end, multiprocessor systems running commercial workloads, have typically included extensive cooling systems and resided in custom-built rooms for high-power delivery. Recently, as transistor density and demand for computing resources have rapidly increased, even these high-end systems face energy-use constraints. Commercial-server energy management now focuses on conserving power in the memory and microprocessor subsystems. Because their workloads are typically structured as multiple application programs, system-wide approaches are more applicable to multiprocessor environments in commercial servers than techniques that primarily apply to single-application environments, such as those based on compiler optimizations. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9162 1558-0814 |
DOI: | 10.1109/MC.2003.1250880 |