Understanding Private Car Aggregation Effect via Spatio-Temporal Analysis of Trajectory Data
Understanding the private car aggregation effect is conducive to a broad range of applications, from intelligent transportation management to urban planning. However, this work is challenging, especially on weekends, due to the inefficient representations of spatiotemporal features for such aggregat...
Saved in:
Published in: | IEEE transactions on cybernetics Vol. 53; no. 4; pp. 2346 - 2357 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-04-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding the private car aggregation effect is conducive to a broad range of applications, from intelligent transportation management to urban planning. However, this work is challenging, especially on weekends, due to the inefficient representations of spatiotemporal features for such aggregation effect and the considerable randomness of private car mobility on weekends. In this article, we propose a deep learning framework for a spatiotemporal attention network (STANet) with a neural algorithm logic unit (NALU), the so-called STANet-NALU, to understand the dynamic aggregation effect of private cars on weekends. Specifically: 1) we design an improved kernel density estimator (KDE) by defining a log-cosh loss function to calculate the spatial distribution of the aggregation effect with guaranteed robustness and 2) we utilize the stay time of private cars as a temporal feature to represent the nonlinear temporal correlation of the aggregation effect. Next, we propose a spatiotemporal attention module that separately captures the dynamic spatial correlation and nonlinear temporal correlation of the private car aggregation effect, and then we design a gate control unit to fuse spatiotemporal features adaptively. Further, we establish the STANet-NALU structure, which provides the model with numerical extrapolation ability to generate promising prediction results of the private car aggregation effect on weekends. We conduct extensive experiments based on real-world private car trajectories data. The results reveal that the proposed STANet-NALU outperforms the well-known existing methods in terms of various metrics, including the mean absolute error (MAE), root mean square error (RMSE), Kullback-Leibler divergence (KL), and R2. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2168-2267 2168-2275 |
DOI: | 10.1109/TCYB.2021.3117705 |