FEC performance of PMD-impaired optical communication system with multiple-wavelength interleaving
In this letter, a novel wavelength-interleaved forward-error correction scheme to mitigate the polarization-mode dispersion (PMD) impairment in optical transmission system is proposed and analyzed. With double-wavelength interleaving and Reed Solomon (255, 239) coding, this method can extend the PMD...
Saved in:
Published in: | IEEE photonics technology letters Vol. 16; no. 3; pp. 936 - 938 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-03-2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this letter, a novel wavelength-interleaved forward-error correction scheme to mitigate the polarization-mode dispersion (PMD) impairment in optical transmission system is proposed and analyzed. With double-wavelength interleaving and Reed Solomon (255, 239) coding, this method can extend the PMD tolerance by more than 20% at an output bit-error rate of 10/sup -12/, and about 14%-36% for an outage probability of 10/sup -6/, over a similar system without interleaving. It can also provide a net coding gain of over 6 dB at all tolerable PMD levels, which cannot be achieved by a noninterleaved system. For a four-wavelength interleaving system, the corresponding performance gains are over 26%. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/LPT.2004.823745 |