System Light-Loading Technology for mHealth: Manifold-Learning-Based Medical Data Cleansing and Clinical Trials in WE-CARE Project

Cardiovascular disease (CVD) is a major issue to public health. It contributes 41% to the Chinese death rate each year. This huge loss encouraged us to develop a Wearable Efficient teleCARdiology systEm (WE-CARE) for early warning and prevention of CVD risks in real time. WE-CARE is expected to work...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics Vol. 18; no. 5; pp. 1581 - 1589
Main Authors: Anpeng Huang, Wenyao Xu, Zhinan Li, Linzhen Xie, Sarrafzadeh, Majid, Xiaoming Li, Cong, Jason
Format: Journal Article
Language:English
Published: United States IEEE 01-09-2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cardiovascular disease (CVD) is a major issue to public health. It contributes 41% to the Chinese death rate each year. This huge loss encouraged us to develop a Wearable Efficient teleCARdiology systEm (WE-CARE) for early warning and prevention of CVD risks in real time. WE-CARE is expected to work 24/7 online for mobile health (mHealth) applications. Unfortunately, this purpose is often disrupted in system experiments and clinical trials, even if related enabling technologies work properly. This phenomenon is rooted in the overload issue of complex Electrocardiogram (ECG) data in terms of system integration. In this study, our main objective is to get a system light-loading technology to enable mHealth with a benchmarked ECG anomaly recognition rate. To achieve this objective, we propose an approach to purify clinical features from ECG raw data based on manifold learning, called the Manifold-based ECG-feature Purification algorithm. Our clinical trials verify that our proposal can detect anomalies with a recognition rate of up to 94% which is highly valuable in daily public health-risk alert applications based on clinical criteria. Most importantly, the experiment results demonstrate that the WE-CARE system enabled by our proposal can enhance system reliability by at least two times and reduce false negative rates to 0.76%, and extend the battery life by 40.54%, in the system integration level.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2013.2292576