System Light-Loading Technology for mHealth: Manifold-Learning-Based Medical Data Cleansing and Clinical Trials in WE-CARE Project
Cardiovascular disease (CVD) is a major issue to public health. It contributes 41% to the Chinese death rate each year. This huge loss encouraged us to develop a Wearable Efficient teleCARdiology systEm (WE-CARE) for early warning and prevention of CVD risks in real time. WE-CARE is expected to work...
Saved in:
Published in: | IEEE journal of biomedical and health informatics Vol. 18; no. 5; pp. 1581 - 1589 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-09-2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cardiovascular disease (CVD) is a major issue to public health. It contributes 41% to the Chinese death rate each year. This huge loss encouraged us to develop a Wearable Efficient teleCARdiology systEm (WE-CARE) for early warning and prevention of CVD risks in real time. WE-CARE is expected to work 24/7 online for mobile health (mHealth) applications. Unfortunately, this purpose is often disrupted in system experiments and clinical trials, even if related enabling technologies work properly. This phenomenon is rooted in the overload issue of complex Electrocardiogram (ECG) data in terms of system integration. In this study, our main objective is to get a system light-loading technology to enable mHealth with a benchmarked ECG anomaly recognition rate. To achieve this objective, we propose an approach to purify clinical features from ECG raw data based on manifold learning, called the Manifold-based ECG-feature Purification algorithm. Our clinical trials verify that our proposal can detect anomalies with a recognition rate of up to 94% which is highly valuable in daily public health-risk alert applications based on clinical criteria. Most importantly, the experiment results demonstrate that the WE-CARE system enabled by our proposal can enhance system reliability by at least two times and reduce false negative rates to 0.76%, and extend the battery life by 40.54%, in the system integration level. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2168-2194 2168-2208 |
DOI: | 10.1109/JBHI.2013.2292576 |