Overview of R&D at TLK for process and analytical issues on tritium management in breeder blankets of ITER and DEMO

► We present advanced processes and analytics to improve tritium management. ► Membranes and membrane reactors can minimise tritium residence time and inventory. ► Spectroscopic methods can ensure on-line and near to real time tritium measurement. Safe, reliable, and efficient tritium management in...

Full description

Saved in:
Bibliographic Details
Published in:Fusion engineering and design Vol. 87; no. 7-8; pp. 1206 - 1213
Main Authors: Demange, D., Alecu, C.G., Bekris, N., Borisevich, O., Bornschein, B., Fischer, S., Gramlich, N., Köllö, Z., Le, T.L., Michling, R., Priester, F., Röllig, M., Schlösser, M., Stämmler, S., Sturm, M., Wagner, R., Welte, S.
Format: Journal Article
Language:English
Published: Elsevier B.V 01-08-2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:► We present advanced processes and analytics to improve tritium management. ► Membranes and membrane reactors can minimise tritium residence time and inventory. ► Spectroscopic methods can ensure on-line and near to real time tritium measurement. Safe, reliable, and efficient tritium management in the breeder blanket will have to face unprecedented technological challenges. Beside the efficiency for tritium recovery from the breeder blanket (Tritium Extraction (TES) and Coolant Purification Systems (CPS)), the accuracy for tritium tracking between the inner and the outer fuel cycle must also be demonstrated. This paper focuses on the recent R&D carried out at the Tritium Laboratory Karlsruhe to tackle these issues. For ITER, the recently consolidated TES and CPS designs comprise adsorption columns and getter beds operated in semi-continuous mode. Different approaches for the tritium accountancy stage (TAS) have been evaluated. Balancing static (batch-wise gas collection at the TBM outlets and the tritium plant) or dynamic (in/on-line) approaches with respect to the expected analytical performances and integration issues, the first conceptual design of the TAS for EU TBMs is presented. For DEMO, the overall strategy for tritium recovery and tracking has been revisited. The necessity for on-line real-time tritium accountancy and improved process efficiency suggest the use of continuous processes such as permeator and catalytic membrane reactor. The main benefits combining the PERMCAT process with advanced membranes is discussed with respect to process improvements and facilitated accountancy using spectroscopic methods.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0920-3796
1873-7196
DOI:10.1016/j.fusengdes.2012.02.105