An alternative specification of generalized linear mixed models

Consider stratified data in which Y i 1 , … , Y i n i denote real-valued response variables corresponding to the observations from stratum i , i = 1 , … , m and suppose that Y i j follows an exponential family distribution with canonical parameter of the form θ i j = x i j β + γ i . In analyzing dat...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis Vol. 54; no. 2; pp. 575 - 584
Main Authors: Sartori, N., Severini, T.A., Marras, E.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01-02-2010
Elsevier
Series:Computational Statistics & Data Analysis
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Consider stratified data in which Y i 1 , … , Y i n i denote real-valued response variables corresponding to the observations from stratum i , i = 1 , … , m and suppose that Y i j follows an exponential family distribution with canonical parameter of the form θ i j = x i j β + γ i . In analyzing data of this type, the stratum-specific parameters are often modeled as random effects; a commonly-used approach is to assume that γ 1 , … , γ m are independent, identically distributed random variables. The purpose of this paper is to consider an alternative approach to defining the random effects, in which the stratum means of the response variable are assumed to be independent and identically distributed, with a distribution not depending on β . It will be shown that inferences about β based on this formulation of the generalized linear mixed model have many desirable properties. For instance, inferences regarding β are less sensitive to the choice of random effects distribution, are less subject to bias from omitted stratum-level covariates and are less affected by separate between- and within-cluster covariate effects.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2009.09.030