Drip Fertigation Increases Maize Grain Yield by Affecting Phenology, Grain Filling Process, Biomass Accumulation and Translocation: A 4-Year Field Trial

Drip fertigation (DF) is a widely used technology to increase grain yield with water and fertilizer conservation. However, the mechanism of high grain yield (GY) under DF is still unclear. Here, a four-year field experiment assessed the impacts of four treatments (i.e., conventional irrigation and n...

Full description

Saved in:
Bibliographic Details
Published in:Plants (Basel) Vol. 13; no. 14; p. 1903
Main Authors: Du, Ruiqi, Li, Zhijun, Xiang, Youzhen, Sun, Tao, Liu, Xiaochi, Shi, Hongzhao, Li, Wangyang, Huang, Xiangyang, Tang, Zijun, Lu, Junsheng, Chen, Junying, Zhang, Fucang
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01-07-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drip fertigation (DF) is a widely used technology to increase grain yield with water and fertilizer conservation. However, the mechanism of high grain yield (GY) under DF is still unclear. Here, a four-year field experiment assessed the impacts of four treatments (i.e., conventional irrigation and nitrogen application, CK; drip irrigation with conventional nitrogen fertilization, DI; split-nitrogen fertigation with conventional irrigation, SF; and drip fertigation, DF) on maize phenology, leaf photosynthetic rates, grain filling processes, plant biomass, and GY. The results showed that DF significantly increased maize GY by affecting phenology, grain filling traits, aboveground biomass (BIO) accumulation, and translocation. Specifically, DF significantly increased leaf chlorophyll content, which enhanced leaf photosynthetic rates, and together with an increase of leaf area index, promoted BIO accumulation. As a result, the BIO at the silking stage of DF increased by 29.5%, transported biomass increased by 109.2% (1.2 t ha ), and the accumulation of BIO after silking increased by 23.1% (1.7 t ha ) compared with CK. Meanwhile, DF prolonged grain filling days, significantly increased the grain weight of 100 kernels, and promoted GY increase. Compared with CK, the four-year averaged GY and BIO increased by 34.3% and 26.8% under DF; a 29.7%, 46.1%, and 24.2% GY increase and a 30.7%, 39.5%, and 29.9% BIO increase were contributed by irrigation, nitrogen, and coupling effects of irrigation and nitrogen, respectively. These results reveal the high yield mechanism of drip-fertigated maize, and are of important significance for promoting the application of drip fertigation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2223-7747
2223-7747
DOI:10.3390/plants13141903