Pathway and carbon sources for hepatic glycogen repletion in dogs
The present studies were undertaken to quantitate the relative contributions of the indirect and direct pathways for hepatic glycogen repletion and to determine the role of splanchnic tissues in provision of C precursors used for the indirect pathway. For this purpose, we administered oral glucose (...
Saved in:
Published in: | The American journal of physiology Vol. 260; no. 2 Pt 1; pp. E194 - E202 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-02-1991
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present studies were undertaken to quantitate the relative contributions of the indirect and direct pathways for hepatic glycogen repletion and to determine the role of splanchnic tissues in provision of C precursors used for the indirect pathway. For this purpose, we administered oral glucose (1.4 g/kg) enriched with [1-14C]glucose to 18-h fasted dogs and measured net hepatic and net gastrointestinal glucose, lactate, and alanine balance, hepatic and gastrointestinal fractional extraction [( 3H]lactate), release and uptake of lactate, as well as the total amount of hepatic glycogen formed from the oral glucose and the 14C labeling pattern of the glycogen-glucose C. Although net hepatic glucose uptake (8.7 +/- 0.6 g, 27% of the oral load) exceeded the amount of glycogen formed from the oral glucose (6.3 +/- 1.1 g), analysis of radioactivity in C-1 of the glycogen glucose indicated that nearly 50% of the glycogen was formed by the indirect pathway. Net hepatic uptake of lactate (1.4 +/- 0.1 g) and alanine (1.5 +/- 0.1 g) could account for greater than 90% of glycogen formed by the indirect pathway if all of the lactate and alanine taken up by the liver had been incorporated into glycogen. Release of lactate and alanine by splanchnic tissues approximated the amount of lactate and alanine taken up by the liver. However, in addition to taking up lactate, the liver also produced nearly as much lactate as the gastrointestinal tract (1.8 +/- 0.2 vs. 2.0 +/- 0.3 g, respectively). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-9513 |
DOI: | 10.1152/ajpendo.1991.260.2.E194 |