Hyperoxia-induced airway hyperresponsiveness and remodeling in immature rats
We exposed 21-day-old rats to either normoxia or hyperoxia (greater than 95% O2) for 8 days and assessed in vivo airway responsiveness to aerosolized and intravenous methacholine (MCh) and airway architecture. Airway responsiveness was determined using a plethysmographic method. Hyperoxia increased...
Saved in:
Published in: | The American journal of physiology Vol. 262; no. 3 Pt 1; pp. L263 - L269 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-03-1992
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We exposed 21-day-old rats to either normoxia or hyperoxia (greater than 95% O2) for 8 days and assessed in vivo airway responsiveness to aerosolized and intravenous methacholine (MCh) and airway architecture. Airway responsiveness was determined using a plethysmographic method. Hyperoxia increased airway cholinergic responsiveness, as reflected in a decreased mean ED200 (concentration of MCh required to increase respiratory system resistance by 100%) for both aerosolized MCh [air exposed, 5.94 +/- 2.50 vs. O2 exposed, 0.29 +/- 3.34 (SD) mg/ml, P = 0.0013, unpaired t test] and intravenous MCh (air, 1.40 x 10(-8) vs. O2, 2.45 x 10(-10) mol/kg, P = 0.0002). Airway morphometry was studied in a separate cohort of animals. After fixation by distension with Formalin at 25 cmH2O pressure, each airway cross section was photographed, and airway circumference, epithelial area, and smooth muscle layer area were determined by means of contour tracing using a digitizing pad and microcomputer. For the small airways (circumference less than 1,000 microns), hyperoxia increased both mean epithelial thickness (air, 4.88 +/- 0.53; O2, 8.64 +/- 0.90 microns) and mean smooth muscle layer thickness (air, 2.69 +/- 0.11; O2, 4.79 +/- 0.56 microns; P less than 0.0001 for each). O2 had similar effects on the larger (1,000-3,000 microns) central airways (P less than 0.0001 for both layers). We conclude that chronic hyperoxic exposure induces both airway hyperresponsiveness and airway wall thickening in immature rats. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-9513 |
DOI: | 10.1152/ajplung.1992.262.3.l263 |