A Short Proof of McDougall’s Circle Theorem
This note offers a short, elementary proof of a result similar to Ptolemy’s theorem. Specifically, letdi ,jdenote the distance betweenPi andPj . Letnbe a positive integer andPi , for 1 ≤i≤ 2n, be cyclically ordered points on a circle. If then
Saved in:
Published in: | The American mathematical monthly Vol. 121; no. 3; pp. 263 - 265 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
Mathematical Association of America
01-03-2014
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This note offers a short, elementary proof of a result similar to Ptolemy’s theorem. Specifically, letdi
,jdenote the distance betweenPi
andPj
. Letnbe a positive integer andPi
, for 1 ≤i≤ 2n, be cyclically ordered points on a circle. If
then |
---|---|
ISSN: | 0002-9890 1930-0972 |
DOI: | 10.4169/amer.math.monthly.121.03.263 |