Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation

Highly laminar graphene oxide flakes (10 to 20 μm in diameter) are fabricated. Reducing flake thickness to 10 nm enables water and organic solvent permeation, enabling the flakes to act as a highly effective organic solvent membrane. Graphene oxide (GO) membranes continue to attract intense interest...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials Vol. 16; no. 12; pp. 1198 - 1202
Main Authors: Yang, Q., Su, Y., Chi, C., Cherian, C. T., Huang, K., Kravets, V. G., Wang, F. C., Zhang, J. C., Pratt, A., Grigorenko, A. N., Guinea, F., Geim, A. K., Nair, R. R.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01-12-2017
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Highly laminar graphene oxide flakes (10 to 20 μm in diameter) are fabricated. Reducing flake thickness to 10 nm enables water and organic solvent permeation, enabling the flakes to act as a highly effective organic solvent membrane. Graphene oxide (GO) membranes continue to attract intense interest due to their unique molecular sieving properties combined with fast permeation 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . However, their use is limited to aqueous solutions because GO membranes appear impermeable to organic solvents 1 , a phenomenon not yet fully understood. Here, we report efficient and fast filtration of organic solutions through GO laminates containing smooth two-dimensional (2D) capillaries made from large (10–20 μm) flakes. Without modification of sieving characteristics, these membranes can be made exceptionally thin, down to ∼10 nm, which translates into fast water and organic solvent permeation. We attribute organic solvent permeation and sieving properties to randomly distributed pinholes interconnected by short graphene channels with a width of 1 nm. With increasing membrane thickness, organic solvent permeation rates decay exponentially but water continues to permeate quickly, in agreement with previous reports 1 , 2 , 3 , 4 . The potential of ultrathin GO laminates for organic solvent nanofiltration is demonstrated by showing >99.9% rejection of small molecular weight organic dyes dissolved in methanol. Our work significantly expands possibilities for the use of GO membranes in purification and filtration technologies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1476-1122
1476-4660
DOI:10.1038/nmat5025