A converse of Loewner–Heinz inequality and applications to operator means

Let f(t) be an operator monotone function. Then A⩽B implies f(A)⩽f(B), but the converse implication is not true. Let A♯B be the geometric mean of A,B⩾0. If A⩽B, then B−1♯A⩽I; the converse implication is not true either. We will show that if f(λB+I)−1♯f(λA+I)⩽I for all sufficiently small λ>0, then...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications Vol. 413; no. 1; pp. 422 - 429
Main Authors: Uchiyama, Mitsuru, Yamazaki, Takeaki
Format: Journal Article
Language:English
Published: Elsevier Inc 01-05-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let f(t) be an operator monotone function. Then A⩽B implies f(A)⩽f(B), but the converse implication is not true. Let A♯B be the geometric mean of A,B⩾0. If A⩽B, then B−1♯A⩽I; the converse implication is not true either. We will show that if f(λB+I)−1♯f(λA+I)⩽I for all sufficiently small λ>0, then f(λA+I)⩽f(λB+I) and A⩽B. Moreover, we extend it to multi-variable matrices means.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2013.11.055