Modelling of 3D concrete printing based on computational fluid dynamics
This paper presents a computational fluid dynamic model of 3D Concrete Printing. The numerical simulation is used to predict the cross-sectional shape of 3D printed segments through “virtual printing” simulations. An experimental parametric study of the layer geometry is also conducted for a wide ra...
Saved in:
Published in: | Cement and concrete research Vol. 138; p. 106256 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elmsford
Elsevier Ltd
01-12-2020
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a computational fluid dynamic model of 3D Concrete Printing. The numerical simulation is used to predict the cross-sectional shape of 3D printed segments through “virtual printing” simulations. An experimental parametric study of the layer geometry is also conducted for a wide range of processing printing speeds and nozzle heights. The constitutive behavior of the cement-based mortar used in experiments is characterized by rotational and oscillatory rheological tests, and it is modelled with a Bingham constitutive law. Moreover, two formulations of the constitutive law are used in the simulations: the generalized Newtonian fluid model, and the elasto-visco-plastic fluid. Overall, the numerical results agree well with the experiments, validating the proposed computational fluid dynamics modelling approach. Finally, an example of multi-layer print simulations as well as research prospects are presented. |
---|---|
ISSN: | 0008-8846 1873-3948 |
DOI: | 10.1016/j.cemconres.2020.106256 |