Scaled consensus design for multiagent systems under DoS attacks and communication-delays
This paper aims to solve scaled consensus problem for general linear multiagent systems under denial-of-service (DoS) attacks. Firstly, we propose a new scaled disagreement vector and investigate its properties under switching and undirected graphs. Secondly, we establish sufficient conditions in te...
Saved in:
Published in: | Journal of the Franklin Institute Vol. 358; no. 7; pp. 3901 - 3918 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Elmsford
Elsevier Ltd
01-05-2021
Elsevier Science Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper aims to solve scaled consensus problem for general linear multiagent systems under denial-of-service (DoS) attacks. Firstly, we propose a new scaled disagreement vector and investigate its properties under switching and undirected graphs. Secondly, we establish sufficient conditions in terms of linear matrix inequalities in order to guarantee that the multiagent system achieves scaled consensus under DoS attacks. Contrary to most existing studies where DoS attacks on all the channels are same, in this note, we formulate the problem such that the adversary compromises each agent independently. Moreover, the distributed consensus protocol is investigated for networks with time-varying delay. Finally, two simulation examples are given to demonstrate effectiveness of the proposed design methodologies. |
---|---|
ISSN: | 0016-0032 1879-2693 0016-0032 |
DOI: | 10.1016/j.jfranklin.2021.02.031 |