Improved YOLOv8 Algorithm for Water Surface Object Detection

To address the issues of decreased detection accuracy, false detections, and missed detections caused by scale differences between near and distant targets and environmental factors (such as lighting and water waves) in surface target detection tasks for uncrewed vessels, the YOLOv8-MSS algorithm is...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 24; no. 15; p. 5059
Main Authors: Wang, Jie, Zhao, Hong
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 05-08-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To address the issues of decreased detection accuracy, false detections, and missed detections caused by scale differences between near and distant targets and environmental factors (such as lighting and water waves) in surface target detection tasks for uncrewed vessels, the YOLOv8-MSS algorithm is proposed to be used to optimize the detection of water surface targets. By adding a small target detection head, the model becomes more sensitive and accurate in recognizing small targets. To reduce noise interference caused by complex water surface environments during the downsampling process in the backbone network, C2f_MLCA is used to enhance the robustness and stability of the model. The lightweight model SENetV2 is employed in the neck component to improve the model's performance in detecting small targets and its anti-interference capability. The SIoU loss function enhances detection accuracy and bounding box regression precision through shape awareness and geometric information integration. Experiments on the publicly available dataset FloW-Img show that the improved algorithm achieves an mAP@0.5 of 87.9% and an mAP@0.5:0.95 of 47.6%, which are improvements of 5% and 2.6%, respectively, compared to the original model.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s24155059