Thermite reaction driven pyrotechnic formulation with promising functional performance and reduced emissions

Green pyrotechnics/firecrackers reported herein are driven by thermite reactions for self-contained and self-sustained exothermic chemical reactions to make heat and sound by the usage of minimal fuel (aluminum), oxidizer (potassium nitrate), and Sulfur. These firecrackers have the potential for gen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials Vol. 424; p. 127345
Main Authors: Junghare, Suraj, Kumari, Shilpa, Chaudhary, Avinash, Kumar, Rakesh, Rayalu, Sadhana
Format: Journal Article
Language:English
Published: Elsevier B.V 15-02-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Green pyrotechnics/firecrackers reported herein are driven by thermite reactions for self-contained and self-sustained exothermic chemical reactions to make heat and sound by the usage of minimal fuel (aluminum), oxidizer (potassium nitrate), and Sulfur. These firecrackers have the potential for generating less emissions (70%) compared to commercial firecracker-based counterparts due to the presence of additives and are therefore designated as “Green firecrackers” or reduced emissions firecrackers. The functional performance and long-term stability of the composition was investigated through sound measurement and different tests, including ageing, thermal stability, and moisture test. The thermodynamics of the facilitated thermite reaction was cross-checked with experimental and theoretical methods. Prevalent mechanism for a substantial reduction in emissions to the tune of about 70% has been discussed. Cost of the green firecrackers is at par with the commercial firecrackers as cost of raw materials being used to prepare the formulation is comparable to the relatively toxic oxidizer substituted. “Green firecrackers” developed and reported here are environmentally benign in nature with higher business potential as far as a green chemistry-based sustainable solution for the society is required.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2021.127345