Controlling the microstructure and properties of wire arc additive manufactured Ti–6Al–4V with trace boron additions

This study demonstrates that trace boron addition to Ti–6Al–4V coupons produced by additive layer manufacturing is an effective way to eliminate the deleterious anisotropic microstructures often encountered with this manufacturing technique. Trace boron additions (up to 0.13wt.%) to this alloy elimi...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia Vol. 91; pp. 289 - 303
Main Authors: Bermingham, M.J., Kent, D., Zhan, H., StJohn, D.H., Dargusch, M.S.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-06-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study demonstrates that trace boron addition to Ti–6Al–4V coupons produced by additive layer manufacturing is an effective way to eliminate the deleterious anisotropic microstructures often encountered with this manufacturing technique. Trace boron additions (up to 0.13wt.%) to this alloy eliminate grain boundary-α and colony-α, and instead produce a homogeneous α-microstructure consisting of fine equiaxed α-grains in both as-deposited and heat treated coupons. Prior-β grains remain columnar with boron addition but become narrower due to the wider solidification range and growth restricting effect of the boron solute. Compared to unmodified Ti–6Al–4V alloy, Ti–6Al–4V modified with trace boron additions showed up to 40% improvement in plasticity with no loss in strength under uniaxial compression at room temperature. Boron additions were found to inhibit twinning transmission that causes sudden large load drops during deformation of the unmodified Ti–6Al–4V alloy in the heat treated condition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2015.03.035