A 150-kW 99% Efficient All-Silicon-Carbide Triple-Active-Bridge Converter for Solar-Plus-Storage Systems
Solar-plus-storage systems could effectively mitigate the uncertainties of the photovoltaic (PV) generation and improve system reliability by adding an integrated battery energy storage system. As a three-port bidirectional isolated dc-dc converter with soft-switching capability, the triple-active-b...
Saved in:
Published in: | IEEE journal of emerging and selected topics in power electronics Vol. 10; no. 4; pp. 3496 - 3510 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
01-08-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solar-plus-storage systems could effectively mitigate the uncertainties of the photovoltaic (PV) generation and improve system reliability by adding an integrated battery energy storage system. As a three-port bidirectional isolated dc-dc converter with soft-switching capability, the triple-active-bridge (TAB) converter inherently matches the requirements of the solar-plus-storage system. However, challenges still remain in the TAB converter design to further improve system efficiency. In this article, the detailed design, implementation, and demonstration for a silicon carbide (SiC) 150-kW TAB converter are presented. Starting from a brief review of the TAB converter, the modulation scheme, power characteristics, and soft-switching region are analyzed. Then, the detailed design of the H-bridge converter building block is given. To improve the system efficiency, a comprehensive characterization of the SiC gate driver with various external gate resistances is performed to address tradeoffs between switching loss and voltage overshoot during transients, as well as the thermal performance of the H-bridge building block. In addition, the design and characterization of the 20-kHz three-port transformer are also given. Comprehensive experimental studies are conducted on a full-power prototype to verify the proposed design. With a measured 99.1% peak efficiency, the proposed TAB converter can fulfill the requirements for solar-plus-storage applications. |
---|---|
ISSN: | 2168-6777 2168-6785 |
DOI: | 10.1109/JESTPE.2020.3044572 |