Programmable Quantum Networked Microgrids

Quantum key distribution (QKD) provides a potent solution to securely distribute keys for two parties. However, QKD itself is vulnerable to denial of service (DoS) attacks. A flexible and resilient QKD-enabled networked microgrids (NMs) architecture is needed but does not yet exist. In this article,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on quantum engineering Vol. 1; pp. 1 - 13
Main Authors: Tang, Zefan, Zhang, Peng, Krawec, Walter O., Jiang, Zimin
Format: Journal Article
Language:English
Published: New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
IEEE
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantum key distribution (QKD) provides a potent solution to securely distribute keys for two parties. However, QKD itself is vulnerable to denial of service (DoS) attacks. A flexible and resilient QKD-enabled networked microgrids (NMs) architecture is needed but does not yet exist. In this article, we present a programmable quantum NMs (PQNMs) architecture. It is a novel framework that integrates both QKD and software-defined networking (SDN) techniques capable of enabling scalable, programmable, quantum-engineered, and ultra-resilient NMs. Equipped with a software-defined adaptive post-processing approach, a two-level key pool sharing strategy and an SDN-enabled event-triggered communication scheme, these PQNMs mitigate the impact of DoS attacks through programmable post-processing and secure key sharing among QKD links, a capability unattainable using existing technologies. Through comprehensive evaluations, we validate the benefits of PQNMs and demonstrate the efficacy of the presented strategies under various circumstances. Extensive results provide insightful resources for building QKD-enabled NMs in practice.
Bibliography:SC0012704; OIA-2040599; ECCS-1831811
BNL-219846-2020-JAAM
National Science Foundation (NSF)
USDOE Office of Electricity Delivery and Energy Reliability (OE), Power Systems Engineering Research and Development
ISSN:2689-1808
2689-1808
DOI:10.1109/TQE.2020.3019738