Performance of Wild Tomato Accessions and Elucidation of Resistance against Invasive Pest Phthorimaea absoluta Damage under Tropical Conditions

Invasive tomato leaf miner, Phthorimaea absoluta causes serious damage and yield loss in tomato production in open-field and protected cultivation. Use of chemical pesticides is uneconomical and adversely affects humans and the environment. Host-plant resistance is an effective, economical and eco-f...

Full description

Saved in:
Bibliographic Details
Published in:Horticulturae Vol. 9; no. 2; p. 143
Main Authors: Ghosh, Pritha, Jagadish, K. S., Purushothama, M. G., Hanson, Peter, Rakha, Mohamed, Sotelo-Cardona, Paola, Vaddi, Sridhar, Srinivasan, Ramasamy
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-02-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Invasive tomato leaf miner, Phthorimaea absoluta causes serious damage and yield loss in tomato production in open-field and protected cultivation. Use of chemical pesticides is uneconomical and adversely affects humans and the environment. Host-plant resistance is an effective, economical and eco-friendly alternative to chemical pesticides. In this study, four wild tomato accessions from the World Vegetable Center along with one susceptible check were evaluated for their antixenosis and antibiosis effects on P. absoluta. The accessions VI037241 (Solanum galapagense) and VI037240 (S. cheesmaniae) were highly resistant, leading to 85% larval mortality under no-choice conditions. Choice assay also showed less oviposition preference and reduced pupal weight. Both VI037241 and VI037240 showed the highest resistance under field conditions. The accessions of S. habrochaites (LA1777) and S. habrochaites var. glabratum (VI030462) demonstrated moderate resistance against P. absoluta. Wild accessions recorded significantly less eggs and leaf damage in field trials compared to the susceptible genotype, S. lycopersicum (CL5915). Trichome density, type and higher production of acylsugar contributed to the insect resistance. Acylsugar production in wild accessions was less during the rainy season but significantly higher than in susceptible genotype. These findings can be useful to develop P. absoluta-resistant tomato varieties in tropics.
ISSN:2311-7524
2311-7524
DOI:10.3390/horticulturae9020143