Superadditivity and derivative of operator functions

We will show that if ∑i≠jAiAj≥0 for bounded operators Ai≥0 (i=1,2,⋯,n), then g(∑iAi)≥∑ig(Ai) for every operator convex function g(t) on [0,∞) with g(0)≤0; in particular, (∑iAi)log⁡(∑iAi)≥∑iAilog⁡Ai if each Ai is invertible. Let A,B≥0 and A be invertible. Then we will observe that the Fréchet derivat...

Full description

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications Vol. 465; pp. 401 - 411
Main Authors: Uchiyama, Mitsuru, Uchiyama, Atsushi, Giga, Mariko
Format: Journal Article
Language:English
Published: Elsevier Inc 15-01-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We will show that if ∑i≠jAiAj≥0 for bounded operators Ai≥0 (i=1,2,⋯,n), then g(∑iAi)≥∑ig(Ai) for every operator convex function g(t) on [0,∞) with g(0)≤0; in particular, (∑iAi)log⁡(∑iAi)≥∑iAilog⁡Ai if each Ai is invertible. Let A,B≥0 and A be invertible. Then we will observe that the Fréchet derivative Dg(sA)(B) is increasing on 0<s<∞ for every operator convex function g(t) on (0,∞) if and only if AB+BA≥0.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2014.09.006