Superadditivity and derivative of operator functions
We will show that if ∑i≠jAiAj≥0 for bounded operators Ai≥0 (i=1,2,⋯,n), then g(∑iAi)≥∑ig(Ai) for every operator convex function g(t) on [0,∞) with g(0)≤0; in particular, (∑iAi)log(∑iAi)≥∑iAilogAi if each Ai is invertible. Let A,B≥0 and A be invertible. Then we will observe that the Fréchet derivat...
Saved in:
Published in: | Linear algebra and its applications Vol. 465; pp. 401 - 411 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Inc
15-01-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We will show that if ∑i≠jAiAj≥0 for bounded operators Ai≥0 (i=1,2,⋯,n), then g(∑iAi)≥∑ig(Ai) for every operator convex function g(t) on [0,∞) with g(0)≤0; in particular, (∑iAi)log(∑iAi)≥∑iAilogAi if each Ai is invertible. Let A,B≥0 and A be invertible. Then we will observe that the Fréchet derivative Dg(sA)(B) is increasing on 0<s<∞ for every operator convex function g(t) on (0,∞) if and only if AB+BA≥0. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2014.09.006 |