Small field size dose-profile measurements using gel dosimeters, gafchromic films and micro-thermoluminescent dosimeters
The introduction of mini-multi-leaf collimators (MMLC) into radiotherapy has seen the use of smaller field sizes become increasingly important. Small field sizes that tightly conform to precise target regions are sought in radiotherapy to deliver doses with a high therapeutic ratio. MMLCs have made...
Saved in:
Published in: | Radiation measurements Vol. 44; no. 3; pp. 249 - 256 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
01-03-2009
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The introduction of mini-multi-leaf collimators (MMLC) into radiotherapy has seen the use of smaller field sizes become increasingly important. Small field sizes that tightly conform to precise target regions are sought in radiotherapy to deliver doses with a high therapeutic ratio. MMLCs have made it possible to shrink field sizes in radiotherapy to below half a centimetre. The dosimetry of such fields with conventional dosimeters such as gas-ionisation chambers is not feasible due to limitations caused by the chambers relatively large size compared to the size of the collimated beam. In this work, the dose distribution of radiotherapy beams collimated to such small sizes were examined using polyacrylamide gels dosimeters, Gafchromic films and micro-thermoluminescence dosimeters (micro-TLDs). Dose penumbra widths obtained with gel dosimeters, Gafchormic film and micro-TLDs were generally in agreement with each other, although a wider FWHM of the field was measured with gel in comparison to film. An asymmetric dose distribution between the two axis profiles of a 3
×
3
mm collimated field was observed and can be attributed to an inherent asymmetry of the MMLC. |
---|---|
ISSN: | 1350-4487 1879-0925 |
DOI: | 10.1016/j.radmeas.2009.03.012 |