Optimization of cutting process by GA approach
The paper proposes a new optimization technique based on genetic algorithms (GA) for the determination of the cutting parameters in machining operations. In metal cutting processes, cutting conditions have an influence on reducing the production cost and time and deciding the quality of a final prod...
Saved in:
Published in: | Robotics and computer-integrated manufacturing Vol. 19; no. 1; pp. 113 - 121 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-02-2003
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper proposes a new optimization technique based on genetic algorithms (GA) for the determination of the cutting parameters in machining operations. In metal cutting processes, cutting conditions have an influence on reducing the production cost and time and deciding the quality of a final product. This paper presents a new methodology for continual improvement of cutting conditions with GA. It performs the following: the modification of recommended cutting conditions obtained from a machining data, learning of obtained cutting conditions using neural networks and the substitution of better cutting conditions for those learned previously by a proposed GA. Experimental results show that the proposed genetic algorithm-based procedure for solving the optimization problem is both effective and efficient, and can be integrated into an intelligent manufacturing system for solving complex machining optimization problems. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0736-5845 1879-2537 |
DOI: | 10.1016/S0736-5845(02)00068-6 |