Isoprene function in two contrasting poplars under salt and sunflecks
In the present study, biogenic volatile organic compound (BVOC) emissions and photosynthetic gas exchange of salt-sensitive (Populus x canescens (Aiton) Sm.) and salt-tolerant (Populus euphratica Oliv.) isoprene-emitting and non-isoprene-emitting poplars were examined under controlled high-salinity...
Saved in:
Published in: | Tree physiology Vol. 33; no. 6; pp. 562 - 578 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Canada
01-06-2013
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present study, biogenic volatile organic compound (BVOC) emissions and photosynthetic gas exchange of salt-sensitive (Populus x canescens (Aiton) Sm.) and salt-tolerant (Populus euphratica Oliv.) isoprene-emitting and non-isoprene-emitting poplars were examined under controlled high-salinity and high-temperature and -light episode ('sunfleck') treatments. Combined treatment with salt and sunflecks led to an increased isoprene emission capacity in both poplar species, although the photosynthetic performance of P. × canescens was reduced. Indeed, different allocations of isoprene precursors between the cytosol and the chloroplast in the two species were uncovered by means of (13)CO2 labeling. Populus × canescens leaves, moreover, increased their use of 'alternative' carbon (C) sources in comparison with recently fixed C for isoprene biosynthesis under salinity. Our studies show, however, that isoprene itself does not have a function in poplar survival under salt stress: the non-isoprene-emitting leaves showed only a slightly decreased photosynthetic performance compared with wild type under salt treatment. Lipid composition analysis revealed differences in the double bond index between the isoprene-emitting and non-isoprene-emitting poplars. Four clear metabolomics patterns were recognized, reflecting systemic changes in flavonoids, sterols and C fixation metabolites due to the lack/presence of isoprene and the absence/presence of salt stress. The studies were complemented by long-term temperature stress experiments, which revealed the thermotolerance role of isoprene as the non-isoprene-emitting leaves collapsed under high temperature, releasing a burst of BVOCs. Engineered plants with a low isoprene emission potential might therefore not be capable of resisting high-temperature episodes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0829-318X 1758-4469 |
DOI: | 10.1093/treephys/tpt018 |