Feature Mode Decomposition: New Decomposition Theory for Rotating Machinery Fault Diagnosis
In this article, a new decomposition theory, feature mode decomposition (FMD), is tailored for the feature extraction of machinery fault. The proposed FMD is essentially for the purpose of decomposing the different modes by the designed adaptive finite-impulse response (FIR) filters. Benefitting fro...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) Vol. 70; no. 2; pp. 1949 - 1960 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-02-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, a new decomposition theory, feature mode decomposition (FMD), is tailored for the feature extraction of machinery fault. The proposed FMD is essentially for the purpose of decomposing the different modes by the designed adaptive finite-impulse response (FIR) filters. Benefitting from the superiority of correlated Kurtosis, FMD takes the impulsiveness and periodicity of fault signal into consideration simultaneously. First, a designed FIR filter bank by Hanning window initialization is used to provide a direction for the decomposition. The period estimation and updating process are then used to lock the fault information. Finally, the redundant and mixing modes are removed in the process of mode selection. The superiority of the FMD is demonstrated to adaptively and accurately decompose the fault mode as well as robust to other interferences and noise using simulated and experimental data collected from bearing single and compound fault. Moreover, it has been demonstrated that FMD has superiority in feature extraction of machinery fault compared with the most popular variational mode decomposition. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2022.3156156 |