Quicksort asymptotics

The number of comparisons  X n used by Quicksort to sort an array of  n distinct numbers has mean μ n of order nlog n and standard deviation of order  n. Using different methods, Régnier and Rösler each showed that the normalized variate Y n :=( X n − μ n )/ n converges in distribution, say to  Y; t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algorithms Vol. 44; no. 1; pp. 4 - 28
Main Authors: Fill, James Allen, Janson, Svante
Format: Journal Article
Language:English
Published: Elsevier Inc 01-07-2002
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The number of comparisons  X n used by Quicksort to sort an array of  n distinct numbers has mean μ n of order nlog n and standard deviation of order  n. Using different methods, Régnier and Rösler each showed that the normalized variate Y n :=( X n − μ n )/ n converges in distribution, say to  Y; the distribution of  Y can be characterized as the unique fixed point with zero mean of a certain distributional transformation. We provide the first rates of convergence for the distribution of  Y n to that of  Y, using various metrics. In particular, we establish the bound 2 n −1/2 in the d 2-metric, and the rate O( n ε−(1/2) ) for Kolmogorov–Smirnov distance, for any positive  ε.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0196-6774
1090-2678
DOI:10.1016/S0196-6774(02)00216-X