A parallelization strategy for hydro-mechanically coupled mechanized tunneling simulations

3D computational simulations of the tunnel advancement in mechanized tunneling usually demand high computational resources. This paper addresses strategies to enable large scale simulations of the advancement process by means of iterative, parallel solvers, considering frictional contact between the...

Full description

Saved in:
Bibliographic Details
Published in:Computers and geotechnics Vol. 120; p. 103378
Main Authors: Bui, Hoang-Giang, Meschke, Günther
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01-04-2020
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:3D computational simulations of the tunnel advancement in mechanized tunneling usually demand high computational resources. This paper addresses strategies to enable large scale simulations of the advancement process by means of iterative, parallel solvers, considering frictional contact between the tunnel boring machine and the soil, fully saturated soil with different permeabilities and a number of additional features inherently connected with tunnel simulations, which require special attention in regards to robustness. To improve the computational performance of mechanized tunnel simulations a solution strategy based on domain decomposition is proposed to solve the resulting discretized linear system in parallel using an appropriately accelerated iterative solver. The interaction between the TBM and the ground is modeled by means of robust contact algorithm based on penalty method. The domain decomposition scheme accounts for contact treatment in parallel, which becomes relevant when the TBM traverses through different domains in the mesh. Different variants of block preconditioners are investigated in regards to their performance to speed-up the convergence of the iterative solver for the block linear system arising from simulations of tunnel advancement in saturated soft soil, considering different permeabilities. A validation of the computational model and selected numerical examples to showcase the efficiency of the proposed method and to verify the applicability of this strategy to high performance tunneling simulations are presented.
ISSN:0266-352X
1873-7633
DOI:10.1016/j.compgeo.2019.103378