A parallelization strategy for hydro-mechanically coupled mechanized tunneling simulations
3D computational simulations of the tunnel advancement in mechanized tunneling usually demand high computational resources. This paper addresses strategies to enable large scale simulations of the advancement process by means of iterative, parallel solvers, considering frictional contact between the...
Saved in:
Published in: | Computers and geotechnics Vol. 120; p. 103378 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Elsevier Ltd
01-04-2020
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 3D computational simulations of the tunnel advancement in mechanized tunneling usually demand high computational resources. This paper addresses strategies to enable large scale simulations of the advancement process by means of iterative, parallel solvers, considering frictional contact between the tunnel boring machine and the soil, fully saturated soil with different permeabilities and a number of additional features inherently connected with tunnel simulations, which require special attention in regards to robustness. To improve the computational performance of mechanized tunnel simulations a solution strategy based on domain decomposition is proposed to solve the resulting discretized linear system in parallel using an appropriately accelerated iterative solver. The interaction between the TBM and the ground is modeled by means of robust contact algorithm based on penalty method. The domain decomposition scheme accounts for contact treatment in parallel, which becomes relevant when the TBM traverses through different domains in the mesh. Different variants of block preconditioners are investigated in regards to their performance to speed-up the convergence of the iterative solver for the block linear system arising from simulations of tunnel advancement in saturated soft soil, considering different permeabilities. A validation of the computational model and selected numerical examples to showcase the efficiency of the proposed method and to verify the applicability of this strategy to high performance tunneling simulations are presented. |
---|---|
ISSN: | 0266-352X 1873-7633 |
DOI: | 10.1016/j.compgeo.2019.103378 |