A tunable dispersion compensating MEMS all-pass filter

A tunable dispersion compensating filter based on a multistage optical all-pass filter with a microelectromechanical (MEM) actuated variable reflector and a thermally tuned cavity is described. A two-stage device was demonstrated with a tuning range of /spl plusmn/100 ps/nm, 50-GHz passband and a gr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE photonics technology letters Vol. 12; no. 6; pp. 651 - 653
Main Authors: Madsen, C.K., Walker, J.A., Ford, J.E., Goossen, K.W., Nielsen, T.N., Lenz, G.
Format: Journal Article
Language:English
Published: New York IEEE 01-06-2000
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A tunable dispersion compensating filter based on a multistage optical all-pass filter with a microelectromechanical (MEM) actuated variable reflector and a thermally tuned cavity is described. A two-stage device was demonstrated with a tuning range of /spl plusmn/100 ps/nm, 50-GHz passband and a group delay ripple less than /spl plusmn/3 ps. The device has negligible polarization dependence and is suitable for single or multiple channel compensation. An off-axis, two-fiber package with an excess loss <2 dB/stage avoids the need for a circulator. By cascading four stages, a passband to channel spacing ratio of 0.8 is obtained that allows both 40 Gb/s nonreturn-to-zero (NRZ) and return-to-zero (RZ) signals to be compensated.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1041-1135
1941-0174
DOI:10.1109/68.849073