Multipurpose Ce-doped Ba-Gd silica glass scintillator for radiation measurements
A new inorganic scintillation material based on Ba-Gd silica glass doped with cerium (BGS) is fabricated and studied. With the highest light yield among heavy glasses at the level of 2500 ph/MeV and fast scintillation response, the new scintillator ensures a good coincidence time resolution of <...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Vol. 1015; p. 165762 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-11-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new inorganic scintillation material based on Ba-Gd silica glass doped with cerium (BGS) is fabricated and studied. With the highest light yield among heavy glasses at the level of 2500 ph/MeV and fast scintillation response, the new scintillator ensures a good coincidence time resolution of < 230 ps FWHM for 511 keV γ-quanta from a 22Na source and SiPM readout. In addition to good performance in γ-quanta detection, the material demonstrates capability for efficient detection of low-energetic neutrons. The scintillator is produced by exploiting the standard industrial glass technology, which allows for an unlimited scaling up the conversion of raw material into a high-quality scintillator at a high rate. The glass can be casted in application-specific molds, so minimizing the material losses. The presented glass scintillator has potential for further improvement of its light output and scintillation response time. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2021.165762 |