Three-Phase Four-Switch Converter for SPMS Generators Based on Model Predictive Current Control for Wave Energy Applications

This paper presents a model predictive current control (MPCC) for three-phase four-switch converters (TPFSC) connected to surface permanent magnet synchronous generators (SPMSGs) in oscillating water column (OWC) wave energy plants, that brings some benefits over the existing control methods used in...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics Vol. 35; no. 1; pp. 289 - 302
Main Authors: Zarei, Mohammad Ebrahim, Ramirez, Dionisio, Nicolas, Carlos Veganzones, Arribas, Jaime Rodriguez
Format: Journal Article
Language:English
Published: New York IEEE 01-01-2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a model predictive current control (MPCC) for three-phase four-switch converters (TPFSC) connected to surface permanent magnet synchronous generators (SPMSGs) in oscillating water column (OWC) wave energy plants, that brings some benefits over the existing control methods used in this type of plants. The proposed MPCC for TPFSC follows the current references with great accuracy, whereas the switching frequency of the insulated-gate bipolar transistor (IGBTs) is fixed and low. This method minimizes the current reference tracking error, and its fast response makes it suitable for the power take-off systems present in wave energy converters. Furthermore, the system features a fast capacitor voltage offset suppression control. The dynamic performance and the voltage offset control of the proposed strategy for TPFSC feeding a SPMSG is evaluated in the Simulink environment. Later, experimental studies are carried out on an 8.7 kW laboratory SPMSG prototype. Finally, the capability of the proposed method to harvest the maximum energy from irregular waves is assessed using an OWC power plant emulator.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2019.2911209