Novel Quantum Molecular Resonance Energy Source for Laparoscopic Bipolar Vessel Sealer: An Experimental Study in Animal Model

This study is to evaluate a novel Quantum Molecular Resonance energy device as a laparoscopic bipolar vessel sealer. The majority of conventional bipolar energy-based vessel sealing devices utilize energy at frequencies between 300 kHz and 500 kHz. The use of such frequencies has disadvantages inclu...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 12; no. 19; p. 9490
Main Authors: Bang, Seokhwan, Yu, Jiwoong, Im, Jungeun, Kwon, Soonyoung, Kim, Jongchang, Kim, Sungmin, Kim, Jung Hyun, Jeong, Byong Chang
Format: Journal Article
Language:English
Published: MDPI AG 01-10-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study is to evaluate a novel Quantum Molecular Resonance energy device as a laparoscopic bipolar vessel sealer. The majority of conventional bipolar energy-based vessel sealing devices utilize energy at frequencies between 300 kHz and 500 kHz. The use of such frequencies has disadvantages including unintended damage to surrounding tissues and excessive surgical smoke production. Here, we developed a bipolar energy source using Quantum Molecular Resonance (QMR) energy of 4–64 MHz and combined this into a laparoscopic vessel sealer. We investigate the microscopic tissue effect and surgeon’s experiences of the laparoscopic bipolar vessel sealer using a novel QMR energy source through animal experiments. QMR energy sources showed higher sealing success rates (100% vs. 66.7%) and a higher burst pressure (963 mmHg vs. 802 mmHg) of the sealed vessels compared to LigaSure™. Histological analysis showed less vessel wall injury in the QMR energy source (55.0% vs. 73.9%). In the laparoscopic setting experiments, compared to LigaSure™, QMR energy sources showed statistically significantly less smoke formation (p = 0.014), less tissue carbonization (p = 0.013), and less stickiness (p = 0.044) during sealing tissues. A novel QMR energy source for a laparoscopic bipolar vessel sealer could produce a better sealing performance and less surrounding tissue damage.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12199490