Combined Sidelobe Reduction and Omnidirectional Linearization of Phased Array by Using Tapered Power Amplifier Biasing and Digital Predistortion

Power amplifier (PA) efficiency and linearity are among the key drivers to reduce energy consumption while enabling high data rates in the fifth-generation (5G) millimeter-wave phased array transmitters. Analog per-branch phase and amplitude control is used to steer the beam, suppress the sidelobes,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques Vol. 69; no. 9; pp. 4284 - 4299
Main Authors: Tervo, Nuutti, Khan, Bilal, Aikio, Janne P., Kursu, Olli, Jokinen, Markku, Leinonen, Marko E., Sonkki, Marko, Rahkonen, Timo, Parssinen, Aarno
Format: Journal Article
Language:English
Published: New York IEEE 01-09-2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Power amplifier (PA) efficiency and linearity are among the key drivers to reduce energy consumption while enabling high data rates in the fifth-generation (5G) millimeter-wave phased array transmitters. Analog per-branch phase and amplitude control is used to steer the beam, suppress the sidelobes, and form zeros to the desired spatial directions. The amplitude control of individual PA inputs makes nonlinearity vary from antenna to antenna, which challenges the common digital predistortion (DPD) used to linearize the array. In this article, we implement an amplitude control for beamforming by tuning the PA gate bias. Varying the output powers via PA biasing makes the nonlinear characteristics observed at the individual PA outputs similar that helps the array DPD to linearize also individual PAs. The technique is validated by both simulations and measurements. As a measurement platform, we use a 28-GHz phased array transceiver equipped with 64 antenna elements and 16 radio frequency chains. The desired beam shape is synthesized by controlling the per-antenna over-the-air-power with PA gate bias. Then, the system is linearized by training DPD with a reference antenna. The DPD is demonstrated with 100-MHz-wide 5G new radio modulated waveform. The best example case showed −23.5-dB maximum sidelobe level (SLL) with 4.9% error vector magnitude and −40.8-dB total radiated adjacent channel power ratio with DPD. The proposed approach enables simultaneous reduction of beam pattern SLL, achieves good linearity in all directions, and maintains the PA efficiency.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2021.3092357