Protonation-Suppression-Free LC-MS/MS Analysis for Profiling of DNA Cytosine Modifications in Adult Mice
DNA cytosine modifications are important epigenetic marks. To elucidate their roles by a large scale of comparative studies, it is important to quantify the abundance of DNA cytosine modifications accurately. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a golden option. The performan...
Saved in:
Published in: | Analytical chemistry (Washington) Vol. 92; no. 11; pp. 7430 - 7436 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
02-06-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | DNA cytosine modifications are important epigenetic marks. To elucidate their roles by a large scale of comparative studies, it is important to quantify the abundance of DNA cytosine modifications accurately. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a golden option. The performance of LC-MS/MS is heavily dependent on the ionization or protonation of target analytes. Initially, we found that two factors, DNA hydrolysate buffer and residual coeluted nucleosides, might greatly suppress the protonation of 5-(hydroxymethyl)-2'-deoxycytidine (5hmdC). Surprisingly, ammonium bicarbonate can eliminate the suppression caused by both factors. Mechanistically, ammonium bicarbonate increases the protonation capacity in the gas phase and facilitates proton transfer to the target nucleosides. Benefiting from these findings, we developed a suppression-free, sensitive, and robust ultrahigh-performance LC-MS/MS assay for massive detection of three DNA cytosine modifications, including 5-methyl-2'-deoxycytidine (5mdC), 5hmdC, and 5-formyl-2'-deoxycytidine (5fdC). In 30 consecutive analyses, the relative standard deviation (RSD) of the 5hmdC and 5fdC peak areas is 2.0% and 3.2%, respectively. In this case, no stable isotope-labeled standard is required for internal calibration. We further performed a comprehensive profiling of DNA cytosine modifications in 26 tissues of age-different C57BL/6N mice. Interestingly, we found that only liver 5hmdC abundance increases with the increasing age of adult mice, suggesting that liver 5hmdC might be a potential indicator of age in adulthood. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.0c00962 |