A machine-learning-based investigation on the mechanical/failure response and thermal conductivity of semiconducting BC2N monolayers

Graphene-like lattices consisting of neighboring elements of boron, carbon and nitrogen are currently among the most attractive two-dimensional (2D) nanomaterials. Most recently, a novel graphene-like lattice with a BC2N stoichiometry has been grown over nickel catalyst via molecular precursor. Insp...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) Vol. 188; pp. 431 - 441
Main Authors: Mortazavi, Bohayra, Novikov, Ivan S., Shapeev, Alexander V.
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01-03-2022
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Graphene-like lattices consisting of neighboring elements of boron, carbon and nitrogen are currently among the most attractive two-dimensional (2D) nanomaterials. Most recently, a novel graphene-like lattice with a BC2N stoichiometry has been grown over nickel catalyst via molecular precursor. Inspired by this experimental advance and exciting physics of h-BxCyNz lattices, herein extensive theoretical calculations are carried out to investigate physical properties of three different h-BC2N lattices. Density functional theory (DFT) results confirm direct-gap semiconducting electronic nature of the BC2N monolayers. In this work, state-of-the-art models based on the machine-learning interatomic potentials (MLIPs) are employed to elaborately explore the mechanical/failure and heat transport properties of various BC2N monolayers under ambient conditions. Outstanding accuracy of the developed MLIP-based classical models are confirmed by comparing the estimations with those by DFT. MLIP-based models are also found to outperform empirical interatomic potentials. It is shown that while the mechanical/failure responses are close for different BC2N lattices, the change of an atomic configuration can result in around four-fold differences in the lattice thermal conductivity. The obtained results confirm the robustness of MLIP-based models and moreover provide an extensive vision concerning the critical physical properties of the BC2N nanosheets and highlight their outstanding heat conduction, mechanical, and electronic characteristics. [Display omitted]
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2021.12.039