Simulations of the field-reversed configuration with the NIMROD code
The recently formed Plasma Science and Innovation Center (PSI-Center) is refining the NIMROD code to simulate field-reversed configurations (FRCs). The NIMROD code can resolve highly anisotropic heat conduction and viscosity. This, combined with its ability to include two-fluid effects, allows us to...
Saved in:
Published in: | Journal of fusion energy Vol. 26; no. 1-2; pp. 113 - 117 |
---|---|
Main Authors: | , , , , |
Format: | Conference Proceeding Journal Article |
Language: | English |
Published: |
Heidelberg
Springer
01-06-2007
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recently formed Plasma Science and Innovation Center (PSI-Center) is refining the NIMROD code to simulate field-reversed configurations (FRCs). The NIMROD code can resolve highly anisotropic heat conduction and viscosity. This, combined with its ability to include two-fluid effects, allows us to capture more detailed physics than previous calculations. Some initial simulations are focused on 2D (n = 0 only) non-linear two-fluid simulations. We present initial validations of a translating FRC and note good conservation of density and magnetic flux. As a validation of the effects of anisotropic thermal conduction, we present a comparison of an FRC with standard thermal transport to one with anisotropic conduction. Two-fluid simulations are shown which produce significant spin-up due to the end-shorting boundary condition. Finally, simulations of the tilt instability are presented, which show that Hall physics significantly retards, but does not eliminate the growth rate. |
---|---|
Bibliography: | SourceType-Scholarly Journals-2 ObjectType-Feature-2 ObjectType-Conference Paper-1 content type line 23 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 |
ISSN: | 0164-0313 1572-9591 |
DOI: | 10.1007/s10894-006-9070-1 |