Preliminary investigation of the multivariate relations between program-selected forbush decreases, worldwide lightning frequency, sunspot number and other solar-terrestrial drivers

Solar wind disturbances such as coronal mass ejections and their interplanetary counterparts and corotating interaction regions are interconnected with solar-terrestrial parameters such as cosmic rays, solar wind, geomagnetic storm, lightning, interplanetary magnetic field, among others. Data select...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus Vol. 137; no. 3; p. 317
Main Authors: Okike, O., Alhassan, J. A.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-03-2022
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solar wind disturbances such as coronal mass ejections and their interplanetary counterparts and corotating interaction regions are interconnected with solar-terrestrial parameters such as cosmic rays, solar wind, geomagnetic storm, lightning, interplanetary magnetic field, among others. Data selection remains a challenging problem in solar-terrestrial studies. While manual selection of Forbush decreases (FDs) is subjective, automated methods are not widely used within the field. We demonstrate that Forbush events algorithm selection technique is an improvement over the common but inefficient manual method. Additionally, a simple coincident computer program was used to select other solar-terrestrial variables using the FD date as the input data. We used models/tools capable of handling simultaneous multidimensional variables to study the complex interrelationships within the Sun–Earth space. Forbush effects (FEs) selected by the IZMIRAN group was used to validate our results. Fourier transform technique and an R-based algorithm were used to identify FDs from Sanae neutron monitor data. In order to select other solar/geophysical variables, the program-selected FD dates were used as input data for the coincident algorithm. The large number of variables selected were analyzed using principal component analysis and multiple regression models. Several analyses showed that variability in solar-terrestrial parameters happens simultaneously with FDs. We conclude that data fluctuations within the Sun–Earth region might be induced simultaneously by common solar events and should be investigated using multidimensional models.
ISSN:2190-5444
2190-5444
DOI:10.1140/epjp/s13360-022-02514-z