Tunable Sensitivity in Long Period Fiber Gratings During Mode Transition With Low Refractive Index Intermediate Layer

Double-clad fibers where the second cladding has a lower refractive index than the first cladding, prove to be ideal structures for potentiating and tuning the sensitivity in long-period fiber gratings (LPFGs) operating in mode transition. When a thin film is deposited on the optical fiber, the seco...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology Vol. 41; no. 13; pp. 4219 - 4229
Main Authors: Del Villar, Ignacio, Montoya-Cardona, Jorge, Imas, J. J., Reyes-Vera, Erick, Zamarreno, Carlos R., Matias, Ignacio R., Cruz, Jose L.
Format: Journal Article
Language:English
Published: New York IEEE 01-07-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Double-clad fibers where the second cladding has a lower refractive index than the first cladding, prove to be ideal structures for potentiating and tuning the sensitivity in long-period fiber gratings (LPFGs) operating in mode transition. When a thin film is deposited on the optical fiber, the second cladding performs acts as a barrier that initially prevents the transition to guidance in the thin film of one of the modes guided in the first cladding. Finally, the transition to guidance occurs with a sensitivity increase, in analogy to the tunnel effect observed in semiconductors. This improvement has been demonstrated both as a function of the thin film thickness and the surrounding medium refractive index, with enhancement factors of 4 and 2, respectively. This idea reinforces the performance of LPFGs, adding a new degree of freedom to the mode transition and the dispersion turning point phenomena. Moreover, the control of the variation of the effective index of cladding modes could be applied in other structures, such as tilted-fiber gratings or evanescent wave sensors.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2022.3226800