THz Backward-Wave Oscillators for Plasma Diagnostic in Nuclear Fusion
Understanding of the anomalous transport attributed to short-scale length microturbulence through collective scattering diagnostics is key to the development of nuclear fusion energy. Signals in the subterahertz (THz) range (0.1-0.8 THz) with adequate power are required to map wider wavenumber regio...
Saved in:
Published in: | IEEE transactions on plasma science Vol. 44; no. 4; pp. 369 - 376 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-04-2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding of the anomalous transport attributed to short-scale length microturbulence through collective scattering diagnostics is key to the development of nuclear fusion energy. Signals in the subterahertz (THz) range (0.1-0.8 THz) with adequate power are required to map wider wavenumber regions. The progress of a joint international effort devoted to the design and realization of novel backward-wave oscillators at 0.346 THz and above with output power in the 1 W range is reported herein. The novel sources possess desirable characteristics to replace the bulky, high maintenance, optically pumped far-infrared lasers so far utilized in this plasma collective scattering diagnostic. The formidable fabrication challenges are described. The future availability of the THz source here reported will have a significant impact in the field of THz applications both for scientific and industrial applications, to provide the output power at THz so far not available. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2016.2541119 |