Judicious fabrication of bifunctionalized graphene oxide/MnFe2O4 magnetic nanohybrids for enhanced removal of Pb(II) from water

[Display omitted] Novel ternary nanohybrids, bifunctionalized graphene oxide/MnFe2O4 magnetic nanoparticles (PEHA-Phos-GO/MnFe2O4), were prepared by a facile method and applied for the removal of Pb(II) from aqueous solution. Attributing to the numerous amino and phosphate groups on the bifunctional...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science Vol. 579; pp. 815 - 822
Main Authors: Dai, Kang, Liu, Guyue, Xu, Wenbin, Deng, Zhenzhen, Wu, Yutong, Zhao, Chuwen, Zhang, Zijian
Format: Journal Article
Language:English
Published: Elsevier Inc 01-11-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Novel ternary nanohybrids, bifunctionalized graphene oxide/MnFe2O4 magnetic nanoparticles (PEHA-Phos-GO/MnFe2O4), were prepared by a facile method and applied for the removal of Pb(II) from aqueous solution. Attributing to the numerous amino and phosphate groups on the bifunctionalized GO nanosheets as well as the magnetic nanoparticles of MnFe2O4, PEHA-Phos-GO/MnFe2O4 demonstrated high removal efficiency of Pb(II) and rapid magnetic separation. The 366.4 mg/g maximum adsorption capacity of Pb(II) on PEHA-Phos-GO/MnFe2O4 was obtained at the optimal adsorption pH of 5.5, much higher than that on GO (212.1 mg/g). The kinetics and isotherm data indicated that the adsorption processes can be well described by the pseudo-second-order kinetics and the Langmuir model. For the adsorption of Pb(II) on PEHA-Phos-GO/MnFe2O4, thermodynamic studies revealed the endothermic nature of the spontaneous adsorption process. The exhibited adsorption capacity, easy magnetic separation and reusability make the PEHA-Phos-GO/MnFe2O4 nanohybrids very promising adsorbents for efficacious removal of heavy metals from aqueous solutions in environmental pollution cleanup.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2020.06.085