Engineering an ultrathin amorphous TiO2 layer for boosting the weatherability of TiO2 pigment with high lightening power
TiO2 pigments are typically coated with inert layers to suppress the photocatalytic activity and improve the weatherability. However, the traditional inert layers have a lower refractive index compared to TiO2, and therefore reduce the lightening power of TiO2. In the present work, a uniform, amorph...
Saved in:
Summary: | TiO2 pigments are typically coated with inert layers to suppress the photocatalytic activity and improve the weatherability. However, the traditional inert layers have a lower refractive index compared to TiO2, and therefore reduce the lightening power of TiO2. In the present work, a uniform, amorphous, 2.9-nm-thick TiO2 protective layer was deposited onto the surface of anatase TiO2 pigments according to pulsed chemical vapor deposition at room temperature, with TiCl4 as titanium precursor. Amorphous TiO2 coating layers exhibited poor photocatalytic activity, leading to a boosted weatherability. Similarly, this coating method is also effective for TiO2 coating with amorphous SiO2 and SnO2 layers. However, the lightening power of amorphous TiO2 layer is higher than those of amorphous SiO2 and SnO2 layers. According to the measurements of photoluminescence lifetime, surface photocurrent density, charge-transfer resistance, and electron spin resonance spectroscopy, it is revealed that the amorphous layer can prevent the migration of photogenerated electrons and holes onto the surface, decreasing the densities of surface electron and hole, and thereby suppress the photocatalytic activity.
[Display omitted] |
---|---|
ISSN: | 1004-9541 2210-321X |
DOI: | 10.1016/j.cjche.2019.04.002 |