A bacteriophytochrome regulates the synthesis of LH4 complexesin Rhodopseudomonas palustris

The non-sulphur purple bacterium Rhodopseudomonas palustris contains five pucAB genes for peripheral light-harvesting complexes. Bacteria grown under high-light conditions absorb at 800 and 850 nm but in low-light the 850 nm peak is almost absent and LH2 complexes are replaced by LH4. The genome con...

Full description

Saved in:
Bibliographic Details
Published in:Photosynthesis research Vol. 85; no. 2; pp. 169 - 180
Main Authors: Evans, Katie, dham-Skelton, Anthony P, Mistry, Hiten, Reynolds, Colin D, Lawless, Anna M, Papiz, Miroslav Z
Format: Journal Article
Language:English
Published: Dordrecht Springer Nature B.V 01-08-2005
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The non-sulphur purple bacterium Rhodopseudomonas palustris contains five pucAB genes for peripheral light-harvesting complexes. Bacteria grown under high-light conditions absorb at 800 and 850 nm but in low-light the 850 nm peak is almost absent and LH2 complexes are replaced by LH4. The genome contains six bacteriophytochromes (Bph). Bphs sense light in the red/far-red through a reversible Pr to Pfr transformation that controls gene expression. Bph3 (RPA1537) controls the expression of a cluster of photosynthetic genes, however most of the peripheral light harvesting complex genes are outside of this region. The pucAB-d genes encode LH4 peptides and are near two Bphs (RPA3015, RPA3016). We have characterised three Bphs and show that Bph4 RPA3015 and Bph3 RPA1537 have different dark stable states. It is known that Bph3 is active in its red absorbing Pr form and suggests a working hypothesis that Bph4 is active in the Pfr state. We show that LH4 expression can be induced with red light at the Pr absorption maximum (708 nm) of Bph4. The property of light transmission of water maybe an important factor in understanding this adaptation. Bph4 can sense the reduction in light intensity indirectly through an increase in ratio of transmitted red/far-red light. The red right activated Bph4 regulates the synthesis of LH4 which concentrates bacteriochlorophyll a pigment absorption at 800 nm to exploit a recovery in water light transmission in this region.[PUBLICATION ABSTRACT]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0166-8595
1573-5079
DOI:10.1007/s11120-005-1369-7