Exact lattice calculations of dispersion coefficients in the presence of external fields and obstacles

We present a study of the field-dependent dispersion coefficient of point-like particles in various 2D overdamped systems with obstructions (periodic, percolating, and trapping distributions of obstacles). These calculations profit from the synthesis of a newly proposed Monte Carlo algorithm--the fi...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. E, Soft matter and biological physics Vol. 15; no. 1; pp. 71 - 82
Main Authors: GAUTHIER, M. G, SLATER, G. W, DORFMAN, K. D
Format: Journal Article
Language:English
Published: Heidelberg Springer 01-09-2004
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a study of the field-dependent dispersion coefficient of point-like particles in various 2D overdamped systems with obstructions (periodic, percolating, and trapping distributions of obstacles). These calculations profit from the synthesis of a newly proposed Monte Carlo algorithm--the first such algorithm that correctly reproduces the free dispersion coefficient in the presence of finite external fields--and an asymptotically exact calculation technique. The resulting method efficiently produces algebraic and numerical results without the need to actually perform Monte Carlo simulations. When compared to such simulations, our exact method features a negligible computational cost and exponentially small errors. Utilizing the power of this numerical method, we engage in comprehensive parametric analysis of several model systems, revealing very subtle effects that would otherwise be swamped by statistical errors or incur prohibitive computational costs. The unified framework presented here serves as a template for further applications of lattice random-walk models of biased diffusion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1292-8941
1292-895X
DOI:10.1140/epje/i2004-10037-9