Two in one: merging photoactivated chemotherapy and photodynamic therapy to fight cancer
The growing number of cancer cases requires the development of new approaches for treatment. A therapy that has attracted the special attention of scientists is photodynamic therapy (PDT) due to its spatial and temporal resolution. However, it is accepted that this treatment methodology has limited...
Saved in:
Published in: | Chemical science (Cambridge) Vol. 15; no. 43; pp. 17760 - 17780 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Royal Society of Chemistry
15-10-2024
The Royal Society of Chemistry |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The growing number of cancer cases requires the development of new approaches for treatment. A therapy that has attracted the special attention of scientists is photodynamic therapy (PDT) due to its spatial and temporal resolution. However, it is accepted that this treatment methodology has limited application in cases of low cellular oxygenation, which is typical of cancerous tissues. Therefore, a strategy to overcome this drawback has been to combine this therapy with photoactivated chemotherapy (PACT), which works independently of the presence of oxygen. In this perspective, we examine compounds that act as both PDT and PACT agents and summarize their photophysical and biological characteristics. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 2041-6520 2041-6539 |
DOI: | 10.1039/d4sc04608k |