Gradient and Parameter Dependent Dirichlet (p(x),q(x))-Laplace Type Problem
We analyze a Dirichlet (p(x),μq(x))-Laplace problem. For a gradient dependent nonlinearity of Carathéodory type, we discuss the existence, uniqueness and asymptotic behavior of weak solutions, as the parameter μ varies on the non-negative real axis. The results are obtained by applying the propertie...
Saved in:
Published in: | Mathematics (Basel) Vol. 10; no. 8; p. 1336 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-04-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We analyze a Dirichlet (p(x),μq(x))-Laplace problem. For a gradient dependent nonlinearity of Carathéodory type, we discuss the existence, uniqueness and asymptotic behavior of weak solutions, as the parameter μ varies on the non-negative real axis. The results are obtained by applying the properties of pseudomonotone operators, jointly with certain a priori estimates. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10081336 |