NF-κB transcriptional activation by TNFα requires phospholipase C, extracellular signal-regulated kinase 2 and poly(ADP-ribose) polymerase-1

The nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is required for pro-inflammatory effects of TNFα. Our previous studies demonstrated that PARP-1 mediates TNFα-induced NF-κB activation in glia. Here, we evaluated the mechanisms by which TNFα activates PARP-1 and PARP-1 mediates NF-κB activat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroinflammation Vol. 12; no. 1; p. 229
Main Authors: Vuong, Billy, Hogan-Cann, Adam D J, Alano, Conrad C, Stevenson, Mackenzie, Chan, Wai Yee, Anderson, Christopher M, Swanson, Raymond A, Kauppinen, Tiina M
Format: Journal Article
Language:English
Published: England BioMed Central 04-12-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is required for pro-inflammatory effects of TNFα. Our previous studies demonstrated that PARP-1 mediates TNFα-induced NF-κB activation in glia. Here, we evaluated the mechanisms by which TNFα activates PARP-1 and PARP-1 mediates NF-κB activation. Primary cultures of mouse cortical astrocytes and microglia were treated with TNFα and suitable signaling pathway modulators (pharmacological and molecular). Outcome measures included calcium imaging, PARP-1 activation status, NF-κB transcriptional activity, DNA damage assesment and cytokine relesease profiling. TNFα induces PARP-1 activation in the absence of detectable DNA strand breaks, as measured by the PANT assay. TNFα-induced transcriptional activation of NF-κB requires PARP-1 enzymatic activity. Enzymatic activation of PARP-1 by TNFα was blocked in Ca(2+)-free medium, by Ca(2+) chelation with BAPTA-AM, and by D609, an inhibitor of phoshatidyl choline-specific phospholipase C (PC-PLC), but not by thapsigargin or by U73112, an inhibitor of phosphatidyl inisitol-specific PLC (PI -PLC). A TNFR1 blocking antibody reduced Ca(2+) influx and PARP-1 activation. TNFα-induced PARP-1 activation was also blocked by siRNA downregulation of ERK2 and by PD98059, an inhibitor of the MEK / ERK protein kinase cascade. Moreover, TNFα-induced NF-κB (p65) transcriptional activation was absent in cells expressing PARP-1 that lacked ERK2 phosphorylation sites, while basal NF-κB transcriptional activation increased in cells expressing PARP-1 with a phosphomimetic substitution at an ERK2 phophorylation site. These results suggest that TNFα induces PARP-1 activation through a signaling pathway involving TNFR1, Ca(2+) influx, activation of PC-PLC, and activation of the MEK1 / ERK2 protein kinase cascade. TNFα-induced PARP-1 activation is not associated with DNA damage, but ERK2 mediated phosphorylation of PARP-1.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1742-2094
1742-2094
DOI:10.1186/s12974-015-0448-8