Hierarchical Attention-Based Age Estimation and Bias Analysis

In this work, we present a Deep Learning approach to estimate age from facial images. First, we introduce a novel attention-based approach to image augmentation-aggregation, which allows multiple image augmentations to be adaptively aggregated using a Transformer-Encoder. A hierarchical probabilisti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 12; pp. 14682 - 14692
Main Authors: Hiba, Shakediel, Keller, Yosi
Format: Journal Article
Language:English
Published: New York IEEE 01-12-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we present a Deep Learning approach to estimate age from facial images. First, we introduce a novel attention-based approach to image augmentation-aggregation, which allows multiple image augmentations to be adaptively aggregated using a Transformer-Encoder. A hierarchical probabilistic regression model is then proposed that combines discrete probabilistic age estimates with an ensemble of regressors. Each regressor is adapted and trained to refine the probability estimate over a given age range. We show that our age estimation scheme outperforms current schemes and provides a new state-of-the-art age estimation accuracy when applied to the MORPH II and CACD datasets. We also present an analysis of the biases in the results of the state-of-the-art age estimates.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-8828
2160-9292
1939-3539
DOI:10.1109/TPAMI.2023.3319472