Hyperactivity and Seizure Induced by Tricresyl Phosphate Are Isomer Specific and Not Linked to Phenyl Valerate-Neuropathy Target Esterase Activity Inhibition in Zebrafish
Abstract Environmental exposure to tricresyl phosphate (TCP) may lead to severe neurotoxic effects, including organophosphate (OP)-induced delayed neuropathy. TCP has three symmetric isomers, distinguished by the methyl group position on the aromatic ring system. One of these isomers, tri-ortho-cres...
Saved in:
Published in: | Toxicological sciences Vol. 180; no. 1; pp. 160 - 174 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Oxford University Press
26-02-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Environmental exposure to tricresyl phosphate (TCP) may lead to severe neurotoxic effects, including organophosphate (OP)-induced delayed neuropathy. TCP has three symmetric isomers, distinguished by the methyl group position on the aromatic ring system. One of these isomers, tri-ortho-cresyl phosphate (ToCP), has been reported for years as a neuropathic OP, targeting neuropathic target esterase (NTE/PNPLA6), but its mode of toxic action had not been fully elucidated. Zebrafish eleuthero-embryo and larva were used to characterize the differential action of the TCP isomers. The symmetric isomers inhibited phenyl valerate (PV)-NTE enzymatic activity in vivo with different IC50, while no effect was observed on acetylcholinesterase activity. Moreover, the locomotor behavior was also affected by tri-para-cresyl phosphate and tri-meta-cresyl phosphate, only ToCP exposure led to locomotor hyperactivity lasting several hours, associated with defects in the postural control system and an impaired phototactic response, as revealed by the visual motor response test. The electric field pulse motor response test demonstrated that a seizure-like, multiple C-bend-spaghetti phenotype may be significantly induced by ToCP only, independently of any inhibition of PV-NTE activity. Eleuthero-embryos exposed to picrotoxin, a known gamma-aminobutyric acid type-A receptor inhibitor, exhibited similar adverse outcomes to ToCP exposure. Thus, our results demonstrated that the TCP mode of toxic action was isomer specific and not initially related to modulation of PV-NTE activity. Furthermore, it was suggested that the molecular events involved were linked to an impairment of the balance between excitation and inhibition in neuronal circuits. |
---|---|
ISSN: | 1096-6080 1096-0929 |
DOI: | 10.1093/toxsci/kfab006 |