Genetic effects of radiofrequency radiation (RFR)
The possible effects of radiofrequency (RF) exposure on the genetic material of cells are considered very important since damage to the DNA of somatic cells can be linked to cancer development or cell death whereas damage to germ cells can lead to genetic damage in next and subsequent generations. T...
Saved in:
Published in: | Toxicology and applied pharmacology Vol. 207; no. 2; pp. 336 - 341 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-09-2005
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The possible effects of radiofrequency (RF) exposure on the genetic material of cells are considered very important since damage to the DNA of somatic cells can be linked to cancer development or cell death whereas damage to germ cells can lead to genetic damage in next and subsequent generations. This is why the scientific literature reports many investigations on the subject. According to a number of review papers, the conclusion so far is that there is little evidence that RFR is directly mutagenic and that adverse effects that were reported in some of the papers are predominantly the result of hyperthermia. Yet, some subtle indirect effects on DNA replication and/or transcription of genes under relatively restricted exposure conditions cannot be ruled out. Furthermore, the possibility of combined effects of RFR with environmental carcinogens/mutagens merits further attention.
The present paper takes into account more recent investigations but the conclusion remains the same. A majority of studies report no increased (cyto)genetic damage but yet, a considerable number of investigations do. However, many studies were not sufficiently characterized, are therefore difficult to replicate and cannot be compared to others. Experimental protocols were very different from one study to another and investigations from a single laboratory were very often limited in the sample size or number of cells investigated, preventing a robust statistical analysis. Subtle, but significant differences between RFR-exposed and sham-exposed cells cannot be found in such conditions. For the above reasons, it was concluded at a workshop in Löwenstein (November 2002) that further investigations by individual laboratories most probably will not add much to the discussion of radiofrequency radiation (RFR) genotoxicity. Large, well coordinated, international collaborative studies involving participation of several experienced scientists are considered an alternative of uttermost importance. One such study is now being planned. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0041-008X 1096-0333 |
DOI: | 10.1016/j.taap.2005.03.028 |